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APPLICATION OF THE FORMALIZED 
CIRCUITS 

 
Nikolay Raychev 

 
Abstract - The purpose of this article is to analyze the practical applications of the reconfigurable formalized circuits 
of Raychev, as well as to analyze the ability of the defined by the author formalized computing models for performing of 
scientific computations.   
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1. INTRODUCTION 
 

The focus of this Article is to be demonstrated two model of universal quantum computations with the formalized circuits 
of Raychev, which provide an architecture that can be used for appropriate algorithmic reprogramming of quantum 
schemes. The size and design of the architecture are fixed, but it itself is scalable, which makes it re-programmable, flexible 
and universal. In a purely quantum computer there is no other such fixed quantum logic architecture, which can be 
realized in deterministic type. This is because the dimension of the formalized programming system is infinite, which 
means that each set of qubit operations is endless. The control of the formalized system could be supported by a classical 
computer.  
 
Here we present details on the implementation of the steps of the input modification, the formation (Vf ) and the 
combination (Vc). A plan of the matrix format of the operations can be found in equation (A3) - for the cases with one qubit 
in the first circuit model - and equation (A8) and equation (A9) - for the cases with two qubits in the second circuit model; 
here the empty spaces denote zeros, and the points - matrix parts, which are of no interest for the final operation. 
 

 
2. THE CIRCUITS 

a. First circuit model 
 
Starting with random input data |ψ›= (α0, α1)T and the following arbitrary unitary matrix:  
 

𝑈 = �
𝑢00 𝑢01
𝑢10 𝑢11�   (A1) 

 
the first method requires 2n+1 = 3 qubits for simulation with the input data:  
 

|𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙⟩ = |0⟩⨂|0⟩⨂|𝜓⟩ =

⎝

⎜
⎜
⎜
⎛

𝑎0
𝑎1
0
0
0
0
0
0 ⎠

⎟
⎟
⎟
⎞

  (A2). 

 
The subsequent represent a matrix Vf , the matrix after the step of combination V and modified input data |𝜓��:  
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𝑉𝑓 =

⎝

⎜
⎜
⎜
⎛

𝑢00 .
. .

𝑢01 .
. .

𝑢10 .
. .

𝑢11 .
. .⎠

⎟
⎟
⎟
⎞

, 𝑉 =
1
√2

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

00 01. .
. . . .
. . . .
. . . .

u u

10 11. .
. . . .
. . . .
. . . .

u u

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

|𝜓⟩ =

⎝

⎜
⎜
⎜
⎛

𝑎0
0
𝑎1
0
𝑎0
0
𝑎1
0 ⎠

⎟
⎟
⎟
⎞

   (A3). 

 
In order to illustrate, below we represent complete forms of some of the operators and output vector for the 

same case: 
The complete form of the obtained matrix from the step of formation is as follows:  
 

𝑢00 �1− 𝑢002 0 0 0 0 0 0
−�1 − 𝑢002 𝑢00 0 0 0 0 0 0

0 0 𝑢01 �1 − 𝑢012 0 0 0 0
0 0 −�1− 𝑢012 𝑢01 0 0 0 0
0 0 0 0 𝑢10 �1− 𝑢102 0 0
0 0 0 0 −�1 − 𝑢102 𝑢10 0 0
0 0 0 0 0 0 𝑢11 �1 − 𝑢112

0 0 0 0 0 0 −�1− 𝑢112 𝑢11

  

 
(A4).  

 
The combined matrix Vc and the matrix for the input modification VM are defined as:  
 

𝑉𝑐 =

1
√2

0 1
√2

0 0 0 0 0

0 1
√2

0 1
√2

0 0 0 0
1
√2

0 − 1
√2

0 0 0 0 0

0 1
√2

0 − 1
√2

0 0 0 0

0 0 0 0 1
√2

0 1
√2

0

0 0 0 0 0 1
√2

0 1
√2

0 0 0 0 1
√2

0 − 1
√2

0

0 0 0 0 0 1
√2

0 − 1
√2

,𝑉𝑚 =

1
√2

0 0 0 1
√2

0 0 0

0 0 1
√2

0 0 0 1
√2

0

0 1
√2

0 0 0 1
√2

0 0

0 0 0 1
√2

0 0 0 1
√2

1
√2

0 0 0 − 1
√2

0 0 0

0 0 1
√2

0 0 0 − 1
√2

0

0 1
√2

0 0 0 − 1
√2

0 0

0 0 0 1
√2

0 0 0 − 1
√2

  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015                                                                1299 
ISSN 2229-5518  

IJSER © 2015 
http://www.ijser.org 

 
(A5).  

 
For the initial input data | ψinitiali›, as in equation (A2), the final output state |ψfinali› becomes:  
 

�𝜓𝑓𝑖𝑛𝑎𝑙� =  𝑉𝑐𝑉𝑓𝑉𝑚�𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙⟩ 
 

             = 1
2

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑎0𝑢00 + 𝑎1𝑢01
−𝑎0�1− 𝑢002 − 𝑎1�1− 𝑢012

𝑎0𝑢00 − 𝑎1𝑢01
−𝑎0�1− 𝑢002 + 𝑎1�1− 𝑢012

𝑎0𝑢10 + 𝑎1𝑢11
−𝑎0�1− 𝑢102 − 𝑎1�1− 𝑢112

𝑎0𝑢10 − 𝑎1𝑢11
−𝑎0�1− 𝑢102 + 𝑎1�1− 𝑢112 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

   (A6). 

 
Apparently the normalized states |00 − 0› and |10 − 0› simulate the initial given system.  
 

b.  Second circuit model 
 

For the same case, because the second circuit model initially works with at least one pair of matrix elements, 
it will create an unitarity in the initial step. There is no need of a step for combination. So the result will be simulated 
on states |00› and |10›. For the two qubit systems below, the simulation goes, as follows:  

 

𝑈 = �

𝑢00 𝑢01 𝑢02 𝑢03
𝑢10 𝑢11 𝑢12 𝑢13
𝑢20 𝑢21 𝑢22 𝑢23
𝑢30 𝑢31 𝑢32 𝑢33

�    (A7). 

 
In the step of formation, if we use blocks 4 by 4, as shown in Fig. 4, the step of combination will not be 

needed, because we will already have formed rows of U in the step of formation. However, if we use 2 by 2 initial 
blocks, we need to use one rotational gate for each pair of elements, then - step for combination. Thus, at the end of 
the formation step, we obtain the following matrix:  

 

𝑉𝑓 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑘0𝑢00 𝑘0𝑢01
. .

𝑘1𝑢02 𝑘1𝑢03
. .

𝑘2𝑢10 𝑘2𝑢11
. .

𝑘3𝑢12 𝑘3𝑢13
. .

𝑘4𝑢20 𝑘4𝑢21
. .

𝑘5𝑢22 𝑘5𝑢23
. .

𝑘6𝑢30 𝑘6𝑢31
. .

𝑘7𝑢32 𝑘7𝑢33
. . ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

 
(A8),  

 
where ki are normalization constants. After subsequent steps of combination and modification of the input 

data we obtain the following matrices and modification of the input data:  
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𝑉 =

⎝
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑢00 𝑢01 𝑢02 𝑢03
. . . .
. . . .
. . . .

𝑢10 𝑢11 𝑢12 𝑢13
. . . .
. . . .
. . . .

𝑢20 𝑢21 𝑢22 𝑢23
. . . .
. . . .
. . . .

𝑢30 𝑢31 𝑢32 𝑢33
. . . .
. . . .
. . . . ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

|𝜓�� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑎0
𝑎1
𝑎2
𝑎3
𝑎0
𝑎1
𝑎2
𝑎3
𝑎0
𝑎1
𝑎2
𝑎3
𝑎0
𝑎1
𝑎2
𝑎3⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

   (A9). 

 
The final step is equivalent to |ψ finali› = V |𝜓��. In |ψfinali›, the states |0000›, |0100›, |1000› and |1100› are 

respective states that simulate initially the unitary matrix. 
  
Annex B: Explicit circuit for unitary propagator of a hydrogen molecule  
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 As it was mentioned, the unitary matrix UH2 for the hydrogen molecule has 19 non-null elements, 15 of 
which are localized on the diagonal. Because the unitary matrix is 16 by 16, we need 4 main and 5 ancilla qubits for 
the first circuit model, given in Fig. 3. And the constantly controlled rotational gates in the step for formation are the 
gates Ry gates, followed by the Rz gates, where we use an identity for the non-zero elements. We, however, can take 
advantage of the sparsity of the matrix and to reduce the number of the ancilla qubits to 2 instead of 5: The non-
diagonal matrix elements are localized at (13, 4), (4, 13), (7, 10) and (10, 7), where (i, j) are indices for the rows and 
columns. We apply a matrix for rearrangement (permutation) P, in order to reduce the range of the matrix. PUH2  
takes non-diagonal elements (13, 4), (4, 13), (7, 10) and (10, 7) to (5, 4), (4, 5), (7, 8) and (8, 7), which creates 

another unitary circuit˜UH2 . ˜UH2 is a structured matrix, where all the elements are localized in (i, i), (i, i + 1) or (i − 
1, i) positions. Thus we can use 2 qubits for the ancilla and 4 qubits for the main ones, in order to create a matrix V, 
having 4 × 4 block matrices on its diagonal through the use of only a single gate of Hadamard in the combination 
step. In the step for formation, the control qubits for Ry gates and Rz gates are defined, in order to form the couples (i, 
i) and (i, i + 1), or (i − 1, i) and (i, i) elements on the first row of these 4 by 4 matrices. The values of the angles are 
defined by the polar representation of each element and are given in Table I. The circuit for ˜UH2  is shown in Fig. 8, 
where ˜R represents a combination of gates Ry and Rz. Please note that the circuit equivalents of the matrices for 
permutation such as P are combinations of  the multi control CNOT gates, where which elements will be transferred 
is defined by the control qubits. And the input data should also be permuted before the circuit. This can be done 
simply by transferring the input data for the qubits. At the end of this circuit, because the leading rows of 4 by 4 
matrices simulate unitary matrix, we receive simulation result from the states |0›, |4›, |8›, |12›, . . . , |60›. 

Fig. 8: Circuit for simulation of the hydrogen molecule. 
 
The values of the angles for the rotational gates are defined in order to be created the elements of ˜UH2: There are 
only 19 rotational gates, the remaining are X gates, in order to be received the right order of the elements after the 
combination. For the diagonal elements of ˜UH2 these rotations are only around the z-axis. For the non-null diagonal 
elements the rotation around the z-axis is followed by rotations around the y axis. The angles for these gates are given 
in Table I 
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TABLE I: Parameters for the rotational gates 
 

 

 
 
 
 

3. CONCLUSION 
 
It is important to note that, in this work, although we have in mind real matrices, it is not difficult to realize each complex 
case both through consideration of each rotational gate as capable to produce each complex element of an unitary matrix in 
the first model of a circuit. This may require more than one conventional rotational gate, but should not increase the upper 
limit of the quantum complexity. The modification of the second circuit, however, may not be so simple, as in the first one: 
it may require additional gates during the steps for combination and formation. 
 
Finding angles 
 
Upon searching the values of the angles with classic computers for a given unitary operator the process can be paralelized 
conveniently to find the angles. For example, the distribution of each row to different cores may be a manner of 
parallelization of the method. This may further be improved and designed with a view of more small blocks. And so the 
time for computation for generation of the angles for both circuits can be very brief. 
 
The procedure for combination, described for both process of designing, is possible to be further improved in order to 
combine the circuits for different unitary operations, by accepting them for initial blocks. One of the blocks, which are used 
for generation of a row of the given matrix can also be used as a circuit for preparing the states (e.g.  Fig. 7) for an arbitrary 
circuit. Moreover, the circuits, which are generated by the first method, have a high similarity with qubus quantum 
computer 22. It is also possible similar ideas to be used for implementation of techniques for circuit models for this type of 
quantum computers. 
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